
Large Language Models (in 2023)

Hyung Won Chung

OpenAI

Twitter: @hwchung27

https://twitter.com/hwchung27

Some abilities emerge with scale

Having the right perspective is crucial

Emergent Abilities of Large Language Models
Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph et al. (2022)

https://arxiv.org/abs/2206.07682

Perspective of “yet”

Perspective of “yet”

This idea doesn’t work

Perspective of “yet”

This idea doesn’t work This idea doesn’t work yet

Why is the perspective of “yet” not so obvious?

We are used to operating in an environment where underlying axioms don’t change

You run an experiment for your new scientific idea. It doesn’t work now. You know
that it will not work if you run 3 years later

For language models, the most capable model serves as an “axiom” for many
research experiments run on top

Need for constant unlearning

Many ideas get outdated and invalidated at larger scale

We need to constantly unlearn intuitions built on such invalidated ideas

With less to unlearn, newcomers can have advantages over more experienced
ones. This is an interesting neutralizing force

Going ahead of the scaling curve

Document experiments that failed because of insufficient “intelligence”

Do not declare failure yet and make it easy to rerun in the future

As soon as the new model comes out, rerun them

Learn what works and what doesn’t

Update your intuition on emergent abilities and scale

Highly simplified view of emergent abilities

GPT-4

Ability 1

ScaleGPT-3 GPT-4

Ability 2

ScaleGPT-3 GPT-4

Ability 3

ScaleGPT-3

How is the scaling actually done?

All LLMs so far use Transformer architecture

Let’s take a “functional” viewpoint on the Transformer

Sequence-to-sequence mapping
with bunch of matmuls

Input: [batch, d_model, length]

Output: [batch, d_model, length]

“Many words don't map to one token: indivisible.”

Shape

[]

Process

“Many words don't map to one token: indivisible.”

Tokenization

[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 452, 12843, 13]

Shape

[]

[length]

Process

https://platform.openai.com/tokenizer

“Many words don't map to one token: indivisible.”

Tokenization

[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 452, 12843, 13]

Embedding

Shape

[]

[length]

Process

[d_model, length]
2.3
4.5
…
3.8

-3.2
5.9
…
1.2

8.3
4.5
…
3.8

5.4
7.1
…
9.0

2.1
1.0
…
9.3

3.9
5.3
…
3.1

-8.9
5.0
…
4.2

3.8
3.1
…
0.8

3.9
0.7
…
9.2

3.3
5.0
…
5.8

https://platform.openai.com/tokenizer

“Many words don't map to one token: indivisible.”

Tokenization

[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 452, 12843, 13]

Embedding

N Transformer layers

Shape

[]

[length]

Process

[d_model, length]
2.3
4.5
…
3.8

-3.2
5.9
…
1.2

8.3
4.5
…
3.8

5.4
7.1
…
9.0

2.1
1.0
…
9.3

3.9
5.3
…
3.1

-8.9
5.0
…
4.2

3.8
3.1
…
0.8

3.9
0.7
…
9.2

3.3
5.0
…
5.8

3.2
5.4
…
8.3

-2.3
9.5
…
2.1

3.8
5.4
…
8.3

4.5
1.7
…
0.9

1.2
0.1
…
3.9

9.3
3.5
…
1.3

-9.8
0.5
…
2.4

8.3
1.3
…
8.0

9.3
7.0
…
2.9

3.3
0.5
…
8.5

[d_model, length]

https://platform.openai.com/tokenizer

“Many words don't map to one token: indivisible.”

Tokenization

[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 452, 12843, 13]

Embedding

N Transformer layers

Shape

[]

[length]

Process

[d_model, length]
2.3
4.5
…
3.8

-3.2
5.9
…
1.2

8.3
4.5
…
3.8

5.4
7.1
…
9.0

2.1
1.0
…
9.3

3.9
5.3
…
3.1

-8.9
5.0
…
4.2

3.8
3.1
…
0.8

3.9
0.7
…
9.2

3.3
5.0
…
5.8

3.2
5.4
…
8.3

-2.3
9.5
…
2.1

3.8
5.4
…
8.3

4.5
1.7
…
0.9

1.2
0.1
…
3.9

9.3
3.5
…
1.3

-9.8
0.5
…
2.4

8.3
1.3
…
8.0

9.3
7.0
…
2.9

3.3
0.5
…
8.5

Loss function (predict next token given previous)

[]2.6

[d_model, length]

https://platform.openai.com/tokenizer

8.2
4.5
…
3.8

2.0
5.9
…
1.2

6.9
4.5
…
3.8

9.1
7.1
…
9.0

8.1
1.0
…
9.3

3.1
5.3
…
3.1

5.1
5.0
…
4.2

4.4
3.1
…
0.8

3.7
0.7
…
9.2

0.1
5.0
…
5.8

8.2
4.5
…
3.8

2.0
5.9
…
1.2

6.9
4.5
…
3.8

9.1
7.1
…
9.0

8.1
1.0
…
9.3

3.1
5.3
…
3.1

5.1
5.0
…
4.2

4.4
3.1
…
0.8

3.7
0.7
…
9.2

0.1
5.0
…
5.8

Many words don't map to one token: indivisible.
Tokenization

[[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 452, 12843, 13]
 [3118, 291, 1098, 3435, 588, 795, 13210, 271, 743, 307, 6626]]

Embedding

N Transformer layers

Batched Shape

[batch]

[batch, length]

Batched Process

[batch, d_model, length]2.3
4.5
…
3.8

-3.2
5.9
…
1.2

8.3
4.5
…
3.8

5.4
7.1
…
9.0

2.1
1.0
…
9.3

3.9
5.3
…
3.1

-8.9
5.0
…
4.2

3.8
3.1
…
0.8

3.9
0.7
…
9.2

3.3
5.0
…
5.8

3.2
5.4
…
8.3

-2.3
9.5
…
2.1

3.8
5.4
…
8.3

4.5
1.7
…
0.9

1.2
0.1
…
3.9

9.3
3.5
…
1.3

-9.8
0.5
…
2.4

8.3
1.3
…
8.0

9.3
7.0
…
2.9

3.3
0.5
…
8.5

[batch, d_model, length]

[]2.6

Loss function (predict next token given previous)

https://platform.openai.com/tokenizer

8.2
4.5
…
3.8

2.0
5.9
…
1.2

6.9
4.5
…
3.8

9.1
7.1
…
9.0

8.1
1.0
…
9.3

3.1
5.3
…
3.1

5.1
5.0
…
4.2

4.4
3.1
…
0.8

3.7
0.7
…
9.2

0.1
5.0
…
5.8

8.2
4.5
…
3.8

2.0
5.9
…
1.2

6.9
4.5
…
3.8

9.1
7.1
…
9.0

8.1
1.0
…
9.3

3.1
5.3
…
3.1

5.1
5.0
…
4.2

4.4
3.1
…
0.8

3.7
0.7
…
9.2

0.1
5.0
…
5.8

Many words don't map to one token: indivisible.
Tokenization

[[7085, 2456, 836, 470, 3975, 284, 530, 11241, 25, 773, 452, 12843, 13]
 [3118, 291, 1098, 3435, 588, 795, 13210, 271, 743, 307, 6626]]

Embedding

N Transformer layers

Batched Shape

[batch]

[batch, length]

Batched Process

[batch, d_model, length]2.3
4.5
…
3.8

-3.2
5.9
…
1.2

8.3
4.5
…
3.8

5.4
7.1
…
9.0

2.1
1.0
…
9.3

3.9
5.3
…
3.1

-8.9
5.0
…
4.2

3.8
3.1
…
0.8

3.9
0.7
…
9.2

3.3
5.0
…
5.8

3.2
5.4
…
8.3

-2.3
9.5
…
2.1

3.8
5.4
…
8.3

4.5
1.7
…
0.9

1.2
0.1
…
3.9

9.3
3.5
…
1.3

-9.8
0.5
…
2.4

8.3
1.3
…
8.0

9.3
7.0
…
2.9

3.3
0.5
…
8.5

[batch, d_model, length]

[]2.6

Loss function (predict next token given previous)

Most compute

https://platform.openai.com/tokenizer

From first-principles view

Scaling Transformer means efficiently doing matmuls with many machines

This involves distributing all the matrices (or arrays) involved in the Transformer
layer to various machines

Do so while minimizing the communication between machines

Matrix multiplication with multiple machines

1 2 3 4 5 6 7 8

We have 8 machines (e.g. 8 GPUs)

A: [16,16] B: [16,16] C: [16,16]
Example adapted from Anselm Levskaya’s

Matrix multiplication with multiple machines

A: [16,16] B: [16,16] C: [16,16]

1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

x axis

y axis

Map each array axis to hardware axis

Matrix multiplication with multiple machines
1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

A: [16y,16x]

y axis

x axis

B: [16y,16x] C: [16y,16x]
Map each array axis to hardware axis

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

Let’s focus on what machine 1 does
1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

A: [16y,16x]

y axis

x axis

B: [16y,16x] C: [16y,16x]

1 2 3 4 1

5

1

All-gather across “x” axis

All-gather across “y” axis

All-gather

1 2 3 4

All-gather

1 2 3 4

1 2 3 4

All-gather

1 2 3 4

1 2 3 4

Local matmul after all-gather
1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

A: [8y,16x]

y axis

x axis

B: [16y,4x] C: [8y,4x]

11

1

Einsum: generalization of matmul

If a letter appears in both input, multiply component-wise

If a letter doesn’t exist on the output, sum over the dimension

np.einsum("i,i->i", a, b) == a * b

np.einsum("i,i->", a, b) == (a * b).sum()

np.einsum("ij,j->i", c, b) == c.dot(b)

Matmul with Einsum

def matmul(A, B):

 C = einsum("mn,np->mp", A, B)

 return C

Matrix multiplication: einsum view

A: [16,16] B: [16,16] C: [16,16]

1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

x axis

y axis

Map each array axis to hardware axis

Matrix multiplication: einsum view

A: [16,16] B: [16,16] C: [16,16]

1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

x axis

y axis

Map each array axis to hardware axis

def matmul(A, B):

 C = einsum("mn,np->mp", A, B)

 return C

Hardware-to-array axis mapping defines parallelism
1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

A: [16y,16x]

y axis

x axis

B: [16y,16x] C: [16y,16x]
Map each array axis to hardware axis

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

1 2 3 4

5 6 7 8

m (array) -> y (hardware)

n (array) -> x (hardware)

@parallelize({"m": “y”, "n": “x”})

def matmul(A, B):

 C = einsum("mn,np->mp", A, B)

 return C

Hardware-to-array axis mapping defines parallelism
m (array) -> y (hardware)

n (array) -> x (hardware)

@parallelize({"m": “y”, "n": “x”})

def matmul(A, B):

 C = einsum("mn,np->mp", A, B)

 return C

For now treat `parallelize` as a black box magic that inserts necessary
all-gather operations

More details later

Now let’s generalize from matmul to a self-attention layer

b: batch

n: sequence length

d: embedding dimension

h: number of heads

k: dimension of each head

def multihead_attention(X, W_q, W_k, W_v, W_o):

 """

 X: [b, n, d] (input array)

 W_q, W_k, W_v, W_o: [h, d, k] (projection parameters)

 Y: [b, n, d] (output array)

 """

 Q = einsum("bnd,hdk−>bhnk", X, W_q)
 K = einsum("bnd,hdk−>bhnk", X, W_k)
 V = einsum("bnd,hdk−>bhnk", X, W_v)
 scores = einsum("bhnk,bhmk−>bhnm", Q, K)
 weights = softmax(scores)

 O = einsum("bhnm,bhmk−>bhnk", weights, V)
 X = einsum("bhnk,hdk−>bnd", O, W_o)
 return Y

Adapted from https://arxiv.org/abs/1911.02150

https://arxiv.org/abs/1911.02150

Now let’s generalize from matmul to a self-attention layer

1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

data

model

In the past (e.g. in Mesh
TensorFlow) “data” and “model”
represented “data parallelism” and
“model parallelism”

Now this is generalized and mostly
by convention

b: batch

n: sequence length

d: embedding dimension

h: number of heads

k: dimension of each head

def multihead_attention(X, W_q, W_k, W_v, W_o):

 """

 X: [b, n, d] (input array)

 W_q, W_k, W_v, W_o: [h, d, k] (projection parameters)

 Y: [b, n, d] (output array)

 """

 Q = einsum("bnd,hdk−>bhnk", X, W_q)
 K = einsum("bnd,hdk−>bhnk", X, W_k)
 V = einsum("bnd,hdk−>bhnk", X, W_v)
 scores = einsum("bhnk,bhmk−>bhnm", Q, K)
 weights = softmax(scores)

 O = einsum("bhnm,bhmk−>bhnk", weights, V)
 X = einsum("bhnk,hdk−>bnd", O, W_o)
 return Y

https://github.com/tensorflow/mesh
https://github.com/tensorflow/mesh

Now let’s generalize from matmul to a self-attention layer

1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

data

model

@parallelize({

 "b": "data",

 "n": None,

 "d": None,

 "h": "model",

 "k": None

})

def multihead_attention(X, W_q, W_k, W_v, W_o):

 """

 X: [b, n, d] (input array)

 W_q, W_k, W_v, W_o: [h, d, k] (projection parameters)

 Y: [b, n, d] (output array)

 """

 Q = einsum("bnd,hdk−>bhnk", X, W_q)
 K = einsum("bnd,hdk−>bhnk", X, W_k)
 V = einsum("bnd,hdk−>bhnk", X, W_v)
 scores = einsum("bhnk,bhmk−>bhnm", Q, K)
 weights = softmax(scores)

 O = einsum("bhnm,bhmk−>bhnk", weights, V)
 X = einsum("bhnk,hdk−>bnd", O, W_o)
 return Y

Toy example to full-scale: same underlying principle

1 2 3 4

5 6 7 8

8 machines arranged in 2x4 mesh

data

model

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

6144 TPU chips

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

So far we have assumed that parallelize decorator just works

One approach: GSPMD

- Write neural net as if you have a machine with infinite memory (no need to
parallelize)

- Represent the core part (e.g. train_step) as a computational graph
- Map the input and output of that graph to hardware axes
- Give the graph to XLA. It inserts necessary communication operations and

returns the parallelized version

Other approaches (e.g. manual annotation) exist but at the end, all these
approaches involve mapping the array axes are mapped to hardwares

https://arxiv.org/abs/2105.04663

Concrete example: JAX’s pjit, a front-end to the XLA GSPMD backend

Define a function train_step that runs both forward and backward passes

“Partition” by wrapping with jax.pjit to get partitioned_train_step

These code paths in T5X1 were used to train PaLM (540B dense language model)

1. Scaling Up Models and Data with t5x and seqio
Adam Roberts*, Hyung Won Chung*, Anselm Levskaya*, Gaurav Mishra*, James Bradbury*, et al. (2022)

https://github.com/google-research/t5x/blob/0728d8429041d6c6e75077334e76eb2370c6057b/t5x/trainer.py#L917
https://github.com/google-research/t5x/blob/0728d8429041d6c6e75077334e76eb2370c6057b/t5x/partitioning.py#L881
https://arxiv.org/abs/2203.17189

Iteration on pre-training is very expensive

Llama 2: Open Foundation and Fine-Tuned Chat Models, Hugo Touvron, Louis Martin, Kevin Stone et al. (2023)

https://arxiv.org/abs/2307.09288

Iteration on pre-training is very expensive

Llama 2: Open Foundation and Fine-Tuned Chat Models, Hugo Touvron, Louis Martin, Kevin Stone et al. (2023)

After 50B tokens, can we conclude that 70B is going smoothly? 🤔

https://arxiv.org/abs/2307.09288

Scaling laws

GPT-4 Technical Report, OpenAI (2023)

https://arxiv.org/abs/2303.08774

Scaling is not going from

python train.py --model_size=small

to

python train.py --model_size=very_large

Scaling to the largest scale ever is very, very hard

During PaLM training, there were about 20 loss spikes that unnerved many people

We trained 3 models (8B, 62B, 540B) on exact same data. Only happened at 540B

This is not caused by bad data

Every hour not making the decision to handle this is 6144 chips sitting idle

Example: loss spikes

Scale is increasing at a faster rate than the rate at which things become easier

At the frontier, it is always challenging for many reasons

It is becoming easier to train a given size, BUT

Scaling doesn’t solve all problems

We also need post-training

We can’t talk to the pretrained model directly

Scaling Instruction-Finetuned Language Models
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus et al. (2022)

https://arxiv.org/abs/2210.11416

Hack: we can frame the question so that the answer is the next token

Q: The square root of x is the cube root of y. What
is y to the power of 2, if x = 4?

A:

Pretrained model just predicts the next token, which happens to be the answer

Pre-trained models always generate something that is a natural

continuation of the prompts even if the prompts are malicious

RLHF

Instruction finetuning

Reward model training

Policy model trainingPretraining

RLHF

Instruction finetuning

Reward model training

Policy model training

1

2

3

Instruction finetuning

Frame all tasks in the form of

natural language instruction to natural language response mapping

Natural language instruction Language model Natural language response

“The course is jumping well.” BERT Linear
layer 0

Input: text Output: label

Task specific linear layer is necessary

Devlin et al. (2018)

https://arxiv.org/abs/1810.04805

“The course is jumping well.” T5

Input: text Output: text

Architecture is unified across tasks with text-to-text format

“not acceptable”

Raffel et al. (2019)

https://arxiv.org/abs/1910.10683

“cola sentence: The
course is jumping well.”

T5

Input: text Output: text

Tasks are not semantically related

“not acceptable”

“stsb sentence1: The rhino
grazed on the grass.
sentence2: A rhino is
grazing in a field

“3.8”

Is the following sentence
acceptable?

“The course is jumping well.”

Instruction
finetuning*

Input: text Output: text

Tasks are unified. So for an unseen task, the model just needs to
respond to the natural language instruction

“It is not
acceptable”

On the scale of 1 to 5, how similar
are the following two sentences?

1. The rhino grazed on the grass.
2. A rhino is grazing in a field.

“3.8”

*Wei et al. (2021), Sanh et al. (2021), Ouyang et al. (2022)

https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2110.08207
https://arxiv.org/abs/2203.02155

Instruction finetuning on 1836 (!!) academic tasks

Scaling the number of tasks and model size improves the performance

Scaling Instruction-Finetuned Language Models
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus et al. (2022)

https://arxiv.org/abs/2210.11416

Scaling the number of tasks and model size improves the performance

Scaling Instruction-Finetuned Language Models
Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus et al. (2022)

https://arxiv.org/abs/2210.11416

Instruction fine-tuning is highly effective but it has inherent limitations

What is the learning objective in instruction finetuning?

For a given input, the target is the single correct answer

In RL, this is called “behavior cloning”

What is the learning objective in instruction finetuning?

For a given input, the target is the single correct answer

In RL, this is called “behavior cloning”

Hope is that if we have enough of these, the model can learn to generalize

What is the learning objective in instruction finetuning?

For a given input, the target is the single correct answer

In RL, this is called “behavior cloning”

Hope is that if we have enough of these, the model can learn to generalize

This requires formalizing the correct behavior for a given input

Exercise: think about the single correct answer

2 + 3?

5

Input

Target

Exercise: think about the single correct answer

나는 이 영화 보는 대신 공부를 했어야 했다

Input

Target

Translate this to Korean:
“I should have studied instead of watching this movie”

Input

Exercise: think about the single correct answer

🤔

Input

Target

Write a letter to a 5-year-old boy from Santa Clause explaining
that Santa is not real. Convey gently so as not to break his heart

Input

Exercise: think about the single correct answer

class LogisticRegression:
…

Input

Target

Implement logistic regression with gradient descent in Python

Input

Observations

Increasingly we want to teach models more abstract behaviors

Observations

Increasingly we want to teach models more abstract behaviors

Objective function of instruction finetuning seems to be the “bottleneck” of
teaching these behaviors

Observations

Increasingly we want to teach models more abstract behaviors

Objective function of instruction finetuning seems to be the “bottleneck” of
teaching these behaviors

The maximum likelihood objective is “predefined” function (i.e. no learnable
parameter)

Observations

Increasingly we want to teach models more abstract behaviors

Objective function of instruction finetuning seems to be the “bottleneck” of
teaching these behaviors

The maximum likelihood objective is “predefined” function (i.e. no learnable
parameter)

Can we parameterize the objective function and learn it?

RL provides one way to use a learned objective

In RL, we try to maximize the expected reward function

RL provides one way to use a learned objective

In RL, we try to maximize the expected reward function

Reward is the objective function. We can learn the reward: reward model.

RL provides one way to use a learned objective

In RL, we try to maximize the expected reward function

Reward is the objective function. We can learn the reward: reward model.

We know how to do supervised learning with neural network well. Let’s use neural
net to represent the reward model.

Reward Model (RM) training

Reward Model (RM) training data: which completion is better?

Explain the moon landing to a 6
year old in a few sentences

People went to the moon, and
they took pictures of what they
saw, and sent them back to the
earth so we could all see them.

Input

Completion 2

The Moon is a natural satellite of the
Earth. It is the fifth largest moon in
the Solar System and the largest

relative to the size of its host planet.

Completion 1

Humans label which completion is preferred.

This setup aims to align models to the human preference

Why use comparison for RM?

For an easy prompt where a clear answer exists, comparison may not be useful

2 + 3?

5

Input

Completion 2

4

Completion 1

Why use comparison for RM?

But for more open-ended generations, it is easier to compare relatively

Completion 2Completion 1

Write a letter to a 5-year-old boy from Santa Clause explaining
that Santa is not real. Convey gently so as not to break his heart

Input

Reward Model (RM) training objective function

Let be the probability that completion is better than completion

Bradley–Terry model (1952): log odds that completion is favored over is
modeled as difference in the rewards

Reward Model (RM) training objective function

Let be the probability that completion is better than completion

Bradley–Terry model (1952): log odds that completion is favored over is
modeled as difference in the rewards

Reward Model (RM) training objective function

Let be the probability that completion is better than completion

Bradley–Terry model (1952): log odds that completion is favored over is
modeled as difference in the rewards

Policy model training

Policy model objective function

Once we have a reward model, we can use it in RL to learn the language model
parameters that maximizes the expected reward

where is the prompt and is the completion
sampled from the policy model.

Policy model training

The optimization problem is then

Policy model training

The optimization problem is then

We use iterative algorithm such as gradient ascent to solve this

Policy model training

The optimization problem is then

We use iterative algorithm such as gradient ascent to solve this

We can use policy gradient algorithms such as PPO to compute the gradient.

RLHF is tricky to get right

Reward model is susceptible to “reward hacking”.

When policy is over-optimized, actual human preference can be negatively
correlated with RM prediction

Steinnon et al. (2020)

https://arxiv.org/abs/2009.01325

Why should we keep studying RLHF?

Maximum likelihood is too strong of an inductive bias

Learning the objective function is a different paradigm and there is a lot of room
for improvement

If something is so principled, we should keep at it until it works

Learnable part of
the system

Input
Hand-designed

program Output

Rule-based systems

Input
Hand-designed

features OutputMapping from
features

Hand- designed
loss function

Classical machine learning

Learnable part of
the system

Input
Hand-designed

program Output

Rule-based systems

Input
Hand-designed

features OutputMapping from
features

Hand- designed
loss function

Classical machine learning

Deep learning: (self-)supervised learning

Learnable part of
the system

Input Learned
features

Mapping from
features

Input
Hand-designed

program Output

Rule-based systems

Output Hand- designed
loss function

Input
Hand-designed

features OutputMapping from
features

Hand- designed
loss function

Classical machine learning

Deep learning: (self-)supervised learning

Learnable part of
the system

Input Learned
features

Mapping from
features

Input
Hand-designed

program Output

Rule-based systems

Output Hand- designed
loss function

logistic regression

Feedforward neural net

Input
Hand-designed

features OutputMapping from
features

Hand- designed
loss function

Classical machine learning

Deep learning: (self-)supervised learning

Learnable part of
the system

Input Learned
features

Mapping from
features

Input
Hand-designed

program Output

Rule-based systems

Deep learning: RLHF

Input Learned
features

Mapping from
features

Learned
loss function

Output Hand- designed
loss function

Output

logistic regression

Feedforward neural net

Input
Hand-designed

features OutputMapping from
features

Hand- designed
loss function

Classical machine learning

Deep learning: (self-)supervised learning

Learnable part of
the system

Input Learned
features

Mapping from
features

Input
Hand-designed

program Output

Rule-based systems

Deep learning: other RL formulations

Input Learned
features

Mapping from
features

Learned
loss function

Output Hand- designed
loss function

logistic regression

Feedforward neural net

Output

Input
Hand-designed

features OutputMapping from
features

Hand- designed
loss function

Classical machine learning

Deep learning: (self-)supervised learning

Learnable part of
the system

Input Learned
features

Mapping from
features

Input
Hand-designed

program Output

Rule-based systems

Deep learning: other RL formulations

Input Learned
features

Mapping from
features

Learned
loss function

Output Hand- designed
loss function

Output

IBM DeepBlue

SVM

GPT-3

???

Bitter lesson: don’t get in the way of scaling

The biggest progress in the past 10 years (or even more) can be summarized as

- Create weaker inductive biases and scale up
- Do not teach machines how we think we think. Let it learn in a machine’s way

It is humbling to accept these

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

http://www.incompleteideas.net/IncIdeas/BitterLesson.html

Internals of Transformers do not matter as much

Many Transformer variants have been proposed but almost all fancy variations
don’t scale well

More useful to abstract away Transformer as sequence of functions and think
about input and output shapes and types

Do Transformer Modifications Transfer Across Implementations and Applications?
Sharan Narang, Hyung Won Chung, Yi Tay, William Fedus, et al. (2021)

https://arxiv.org/abs/2102.11972

Large Language Models (in 2023)

Hyung Won Chung

OpenAI

Twitter: @hwchung27

https://twitter.com/hwchung27

